

XI. Bahnsteuerung

Prof. Dr.-Ing. Rüdiger Dillmann Dr.-Ing. Nikolaus Vahrenkamp

Inhalt

- Grundlagen der Bahnsteuerung
- Interpolationsarten
- Approximierte Bahnsteuerung

Definition: Trajektorie

- Bewegungen eines Roboters werden aufgefasst als
 - Zustandsänderungen
 - über der Zeit
 - relativ zu einem stationären Koordinatensystem (kartesischer Raum, Gelenkwinkelraum)
 - mit Einschränkungen durch
 - Zwangsbedingungen
 - Gütekriterien
 - Neben- und Randbedingungen

Problem

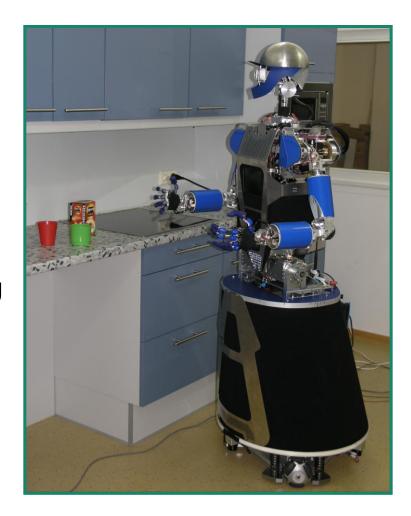
Gegeben

S_{Start}: Zustand zum Startzeitpunkt

- S_{Ziel}: Zustand zum Zielzeitpunkt

Gesucht

 S_i: Zwischenzustände (Stützpunkte), damit die Trajektorie "glatt" und stetig wird.



Beispiel für ein Gelenk

Anfangsbedingungen

$$q(t_o) = 15 Grad$$

$$\dot{q}(t_o) = 0 \frac{Grad}{\text{sec}}$$

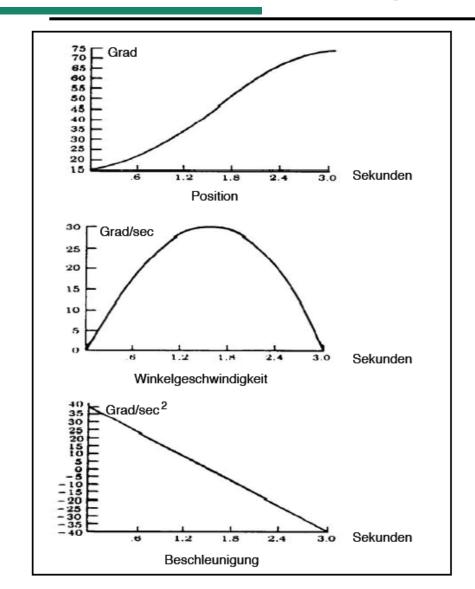
$$\ddot{q}(t_o) = 40 \frac{Grad}{\sec^2}$$

Endbedingungen

$$q(t_e) = 75 Grad$$

$$\dot{q}(t_e) = 0 \frac{Grad}{\sec}$$

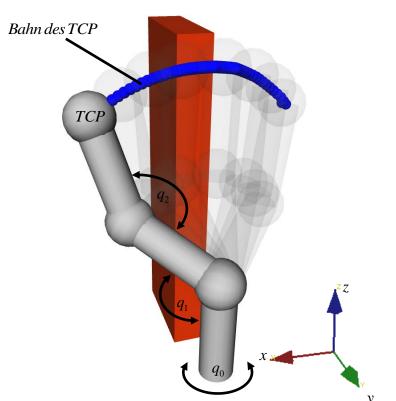
$$\ddot{q}(t_e) = -40 \frac{Grad}{\text{sec}^2}$$



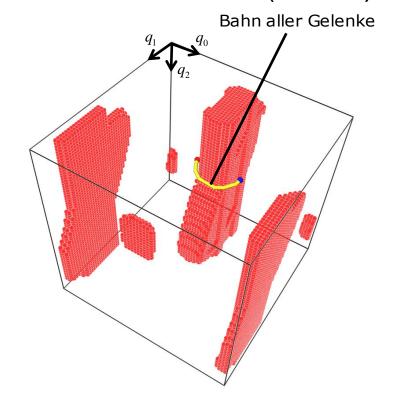
Kartesischer Raum <-> Gelenkwinkelraum

Zustände können dargestellt werden im

Kartesischen Raum (3D/6D)



Gelenkwinkelraum (n-dim.)



Konfigurationsraum

- Zustände können dargestellt werden im
 - Gelenkwinkelraum
 - Kartesischen Raum
- Bahnsteuerung im Gelenkwinkelraum ist n\u00e4her an der Ansteuerung der Teilsysteme des Roboter (Gelenke, Sensorik)
- Bahnsteuerung im Kartesischen Raum ist n\u00e4her an der zu l\u00fcsenden Aufgabe

Bei Steuerung im Kartesischen Raum ist das Lösen der inverse Kinematik nötig

Gelenkwinkelraum

- Bahnsteuerung als Funktion der Gelenkwinkelzustände
- Abfahren dieser punktweise spezifizierten Trajektorien durch
 - Steuerung der Achsen unabhängig voneinander (asynchron)
 Anwendung: Punktschweißen, Handhabungsaufgaben
 - achsinterpolierte Steuerung (Bewegung aller Achsen beginnt und endet zum gleichen Zeitpunkt, Leitachse) (synchron)
 Anwendung: Bahnschweißen, Lackieren, Montieren
- Verlauf der punktweise in Gelenkwinkel spezifizierten Bahn muss im kartesischen Raum nicht notwendigerweise definiert sein

Kartesischer Raum (Continuous Path)

- Angabe der Trajektorie erfolgt als Funktion der Zustände des Roboters
 - z.B. mit Beschreibungsvektor des TCP, v_{TCP}, a_{TCP}
- Endeffektor folgt in Lage und Orientierung einer definierten Bahn
- Bahntypen
 - lineare Bahnen
 - Polynombahnen
 - Splines

Kartesischer Raum

- Bahn einfacher zu formulieren
- + Interpolation ist einfacher

- Inverse Kinematik ist für jeden Trajektorienpunkt zu lösen
- Geplante Trajektorie nicht immer ausführbar

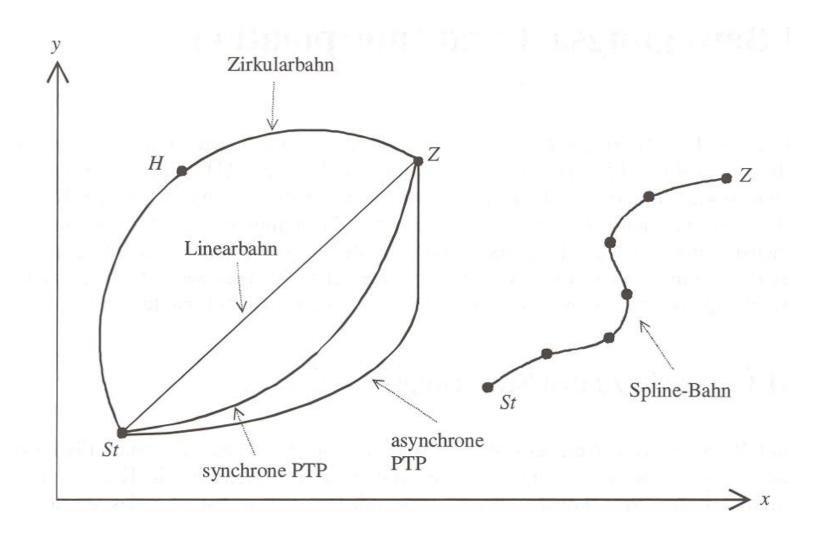
Gelenkwinkelraum

- + Ansteuerung der Gelenke ist einfacher
- + Trajektorie ist eindeutig und berücksichtigt Grenzen

- Interpolation für mehrere Gelenke
- Formulierung der Trajektorie umständlicher

Inhalt

- Grundlagen der Bahnsteuerung
- Interpolationsarten
 - Punkt-zu-Punkt (PTP)
 - Linear- und Zirkularinterpolation
 - Splineinterpolation
- Approximierte Bahnsteuerung



Punkt-zu-Punkt-Steuerung (PTP) (1)

Roboter führt Punkt-zu-Punkt-Bewegung aus

- Vorteile:
 - Die Berechnung der Gelenkwinkeltrajektorie ist einfach
 - Keine Probleme mit Singularitäten

Sequenz von Gelenkwinkelvektoren

$$\vec{q}(t_j) = (q_1(t_j), q_2(t_j), ..., q_n(t_j))^T$$

mit $q_i(t_i)$: Winkel des Gelenks i zum Zeitpunkt t_i mit j = 0,..., k

Punkt-zu-Punkt-Steuerung (PTP) (2)

- Randbedingungen
 - Start- und Zielzustand sind bekannt

- z.B. Geschwindigkeit zu Beginn und am Ende sind Null
- Der Gelenkwinkelvorrat sowie Geschwindigkeiten und Beschleunigungen sind begrenzt (z.B. schnelles Beschleunigen, langsames Abbremsen)

$$\vec{q}(t_{Start}) = \vec{q}_{Start}$$
 $\vec{q}(t_{Ziel}) = \vec{q}_{Ziel}$
 $\dot{\vec{q}}(t_{Start}) = 0$
 $\dot{\vec{q}}(t_{Ziel}) = 0$

$$\vec{q}_{min} < \vec{q}(t_j) < \vec{q}_{max}$$

$$\dot{\vec{q}}(t_j) < \dot{\vec{q}}_{max}$$

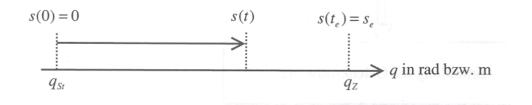
$$\ddot{\vec{q}}(t_j) < \ddot{\vec{q}}_{max}$$

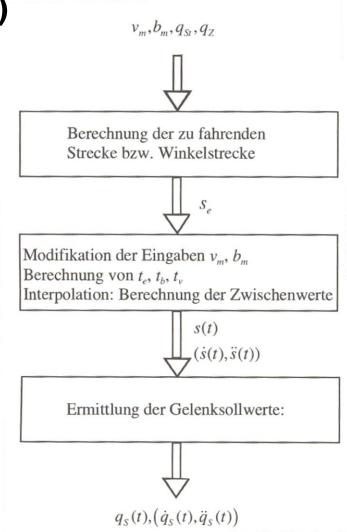
Punkt-zu-Punkt-Steuerung (PTP) (3)

- Ablauf der Steuerung
 - Fahrzeit t_e
 - Beschleunigungszeit t_b
 - Beginn der Bremszeit t_v

$$s(t_e) = s_e = |q_z - q_{st}|$$

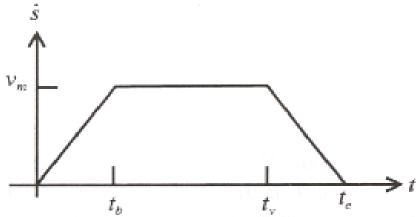
 $s(0) = \dot{s}(0) = v(0) = 0$
 $\dot{s}(t_e) = v(t_e) = 0$





Interpolation für PTP mit Rampenprofil (1)

- Einfache Art zur Berechnung der Bahnparameter s(t)
- Sprungförmige Aufschaltung der Beschleunigung (ruckartig)
- Kann zu Eigenschwingungen von mechanischen Teilen führen



Interpolation für PTP mit Rampenprofil (2)

Phase der Beschleunigung

$$t_b = \frac{v_m}{b_m}$$

$$0 \le t \le t_b : \quad \ddot{s}(t) = b_m$$

$$\dot{s}(t) = b_m \cdot t$$

$$\dot{s}(t) = \frac{1}{2} \cdot b_m \cdot t^2$$

Phase der Gleichmäßigen Fahrt

$$\begin{split} t_b &\leq t \leq t_v: \quad \ddot{s}(t) = 0 \\ & \dot{s}(t) = v_m \\ & s(t) = v_m \cdot t - \frac{1}{2} \cdot b_m \cdot t_b^2 = v_m \cdot t - \frac{1}{2} \cdot \frac{v_m^2}{b} \end{split}$$

Interpolation für PTP mit Rampenprofil (3)

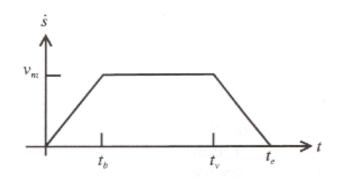
Phase des Bremsvorganges

$$\dot{s}(t) = v_m - b_m \cdot (t - t_v)$$

$$\dot{s}(t) = v_m \cdot (t_e - t_b) - \frac{b_m}{2} \cdot (t_e - t)^2$$

Berechnung der Fahrtzeit

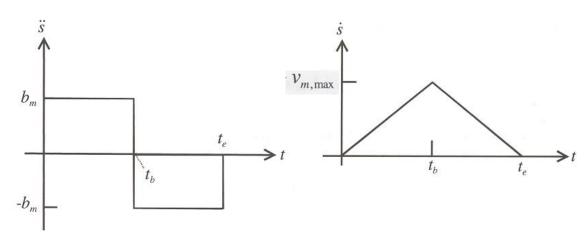
$$t_e = \frac{s_e}{v_m} + t_b = \frac{s_e}{v_m} + \frac{v_m}{b_m}$$



Zeitoptimale Bahn

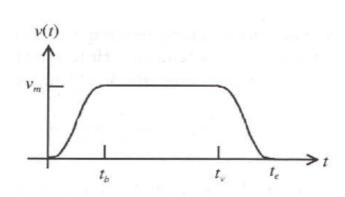
- Falls v_m zu groß in Bezug auf Beschleunigung und Bahnlänge
 - Bestimmung einer zeitoptimalen Bahn nach

$$S_e = t_b \times V_{m, \text{max}} = \frac{V_{m, \text{max}}^2}{b_m} \triangleright V_{m, \text{max}} = \sqrt{b_m \times S_e}$$



Interpolation für PTP mit Sinoidenprofil (1)

- Weichere Bewegung durch Verwendung einer sinusförmigen Zeitfunktion
- Längere Beschleunigungs- und Bremsphase als beim Rampenprofil
- Roboter wird weniger beansprucht
- Bestimmung der Kurvenparameter f
 ür die Phase
 - Beschleunigung
 - Gleichförmige Bewegung
 - Bremsvorgang



Sinoidenprofil zur Interpolation (2)

Phase der Beschleunigung

$$0 \le t \le t_b : \ddot{s}(t) = b_m \cdot \sin^2\left(\frac{\pi}{t_b} \cdot t\right)$$
$$\dot{s}(t) = b_m \cdot \left(\frac{1}{2} \cdot t - \frac{t_b}{4\pi} \cdot \sin\left(\frac{2\pi}{t_b} \cdot t\right)\right)$$
$$s(t) = b_m \cdot \left(\frac{1}{4} \cdot t^2 + \frac{t_b^2}{8\pi^2} \cdot \left(\cos\left(\frac{2\pi}{t_b} \cdot t\right) - 1\right)\right)$$

- Aus $\dot{s}(t_b) = b_m \cdot \frac{1}{2} \cdot t_b \stackrel{!}{=} v_m \text{ folgt } t_b = \frac{2v_m}{b_m}$
- Phase der Gleichmäßigen Fahrt

$$t_b \le t \le t_v : \quad \ddot{s}(t) = 0$$
$$\dot{s}(t) = v_m$$
$$s(t) = v_m \cdot (t - \frac{1}{2} \cdot t_b)$$

Sinoidenprofil zur Interpolation (3)

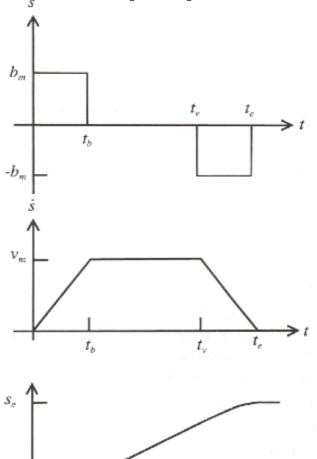
Phase des Bremsvorganges

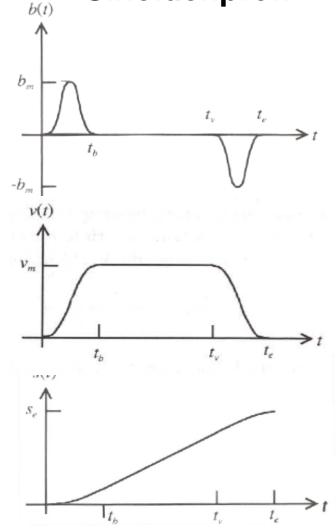
$$t_{v} \leq t \leq t_{e}: \quad \dot{s}(t) = v_{m} - \int_{t-t_{v}}^{t} b(\tau - t_{v}) \cdot d\tau = v_{m} - b_{m} \cdot \left(\frac{1}{2} \cdot (t - t_{v}) - \frac{t_{b}}{4\pi} \cdot \sin\left(\frac{2\pi}{t_{b}} \cdot (t - t_{v})\right)\right)$$

$$s(t) = s(t_v) + \int_{t-t_v}^{t} \dot{s}(\tau - t_v) \cdot d\tau = \frac{b_m}{2} \cdot \left(t_e(t + t_b) - \frac{(t^2 + t_e^2 + 2 \cdot t_b^2)}{2} + \frac{t_b^2}{4\pi^2} \cdot \left(1 - \cos\left(\frac{2\pi}{t_b} \cdot (t - t_v)\right) \right) \right)$$

Berechnung der Fahrtzeit

$$t_e = \frac{s_e}{v_m} + t_b = \frac{s_e}{v_m} + \frac{2 \cdot v_m}{b_m}$$





Synchrone PTP (1)

- Vorgehen bei synchronen PTP-Bahnen
 - Bestimme für jedes Gelenk i PTP-Parameter (analog zur asynchronen PTP)
 - S_{e,i}
 - V_{m,i}
 - b_{m,i}
 - t_{e.i} (Fahrzeit)
 - Bestimme $t_e = t_{e,max} = max(t_{e,i})$
 - Achse mit max. Fahrzeit ist Leitachse
 - Setze $t_{e,i} = t_e$ für **alle** Gelenke

Synchrone PTP (2)

- Bestimme die neuen maximalen Geschwindigkeiten für alle Gelenke
- Umformung Fahrzeit und Berechnung der neuen Geschwindigkeiten
 - Rampenprofil:

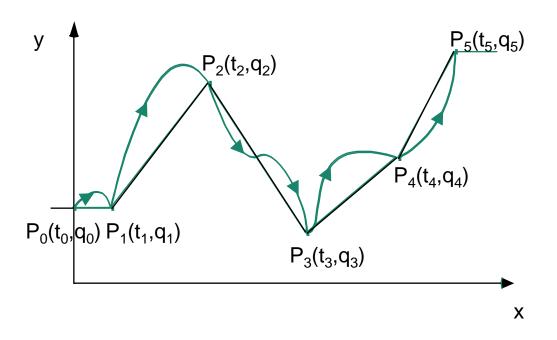
$$t_{e} = \frac{s_{e,i}}{v_{m,i}} + \frac{v_{m,i}}{b_{m,i}} \Rightarrow v_{m,i}^{2} = v_{m,i} \cdot b_{m,i} \cdot t_{e} + s_{e,i} \cdot b_{m,i}$$

$$v_{m,i} = \frac{b_{m,i} \cdot t_e}{2} - \sqrt{\frac{b_{m,i}^2 \cdot t_e^2}{4} - s_{e,i} \cdot b_{m,i}}$$

analoge Berechnung für Sinoidenbahn:

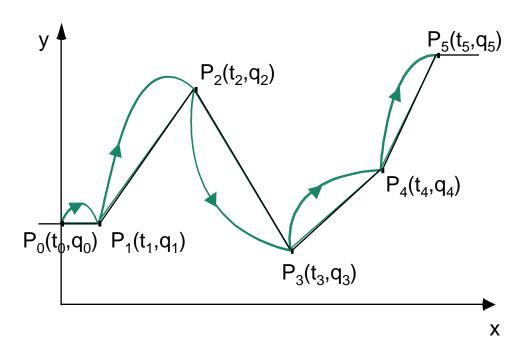
$$v_{m,i} = \frac{b_{m,i} \cdot t_e}{4} - \sqrt{\frac{b_{m,i}^2 \cdot t_e^2 - 8 \cdot s_{e,i} \cdot b_{m,i}}{16}}$$

PTP asynchron



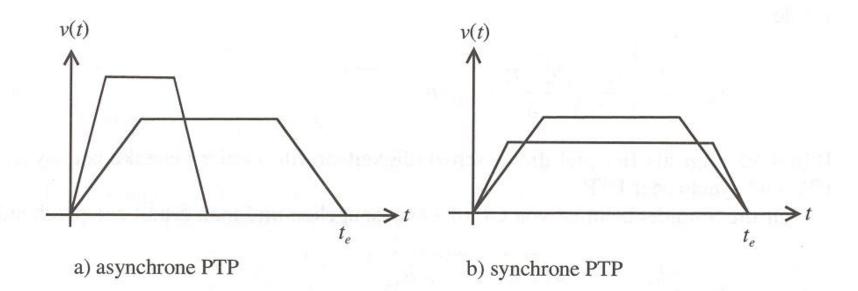
Jedes Gelenk wird sofort mit der maximalen Beschleunigung angesteuert. Jede Gelenkbewegung endet unabhängig von den anderen.

PTP synchron



Alle Gelenke beginnen und beenden ihre Bewegungen gemeinsam (synchron).

Vergleich: asynchrone und synchrone PTP



Vollsynchrone PTP

- zusätzliche Berücksichtigung der Beschleunigungs- und Bremszeit
- bessere Annäherung der Start- und Zielpunkte im kartesischen Raum
- Bestimmung Leitachse mit t_e und t_b => t_v = t_e t_b
- Bestimmung der Geschwindigkeit und Beschleunigung der anderen Achse mit

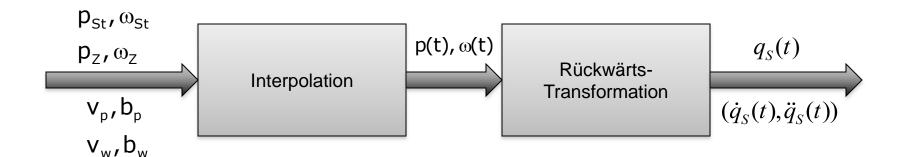
$$v_{m,i} = \frac{s_{e,i}}{t_v}$$

$$b_{m,i} = \frac{v_{m,i}}{t_h}$$

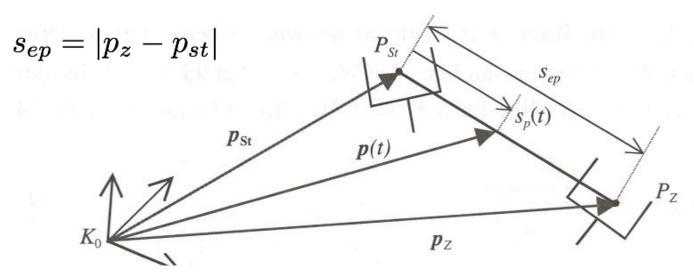
Nachteil: Beschleunigung jeder Achse wird vorgegeben

Steuerung im Kartesischem Raum

- Continuous Path (CP)
- Endeffektor folgt in Lage und Orientierung einer definierten Bahn



Linearinterpolation



$$\boldsymbol{p}(t) = \boldsymbol{p}_{St} + \boldsymbol{s}_{p}(t) \cdot \frac{(\boldsymbol{p}_{Z} - \boldsymbol{p}_{St})}{\boldsymbol{s}_{ep}}$$

Berechnung von s_p(t) mit Rampen- oder Sinoidenprofil

$$\begin{split} s_p(0) &= \dot{s}_p(0) = v_p(0) = 0, \, \dot{s}_p(t_e) = v_p(t_e) = 0 \\ v_m &= v_p, \, b_m = b_p, \, t_e = t_{ep}, \, t_b = t_{bp}, \, t_v = t_{vp}, \, s_e = s_{ep}, \, s = s_p \end{split}$$

Linearinterpolation (2)

• Orientierung in Eulerwinkel $\omega = (\alpha, \beta, \gamma)^T$

$$\mathbf{S}_{\mathrm{e}\omega} = \left| \omega_{\mathrm{Z}} - \omega_{\mathrm{St}} \right| = \sqrt{\left(\alpha_{\mathrm{Z}} - \alpha_{\mathrm{St}} \right)^2 + \left(\beta_{\mathrm{Z}} - \beta_{\mathrm{St}} \right)^2 + \left(\gamma_{\mathrm{Z}} - \gamma_{\mathrm{St}} \right)^2}$$

Berechnung von s_w(t) mit Rampen- oder Sinoidenprofil:

$$v_{m}=v_{\omega}$$
, $b_{m}=b_{\omega}$, $t_{e}=t_{e\omega}$, $t_{b}=t_{b\omega}$, $t_{v}=t_{v\omega}$, $s_{e}=s_{e\omega}$, $v_{m}=v_{\omega}$, $s=s_{\omega}$

Angleich der Fahrzeiten t_{ep} (Position) und t_{ew} (Orientierung)

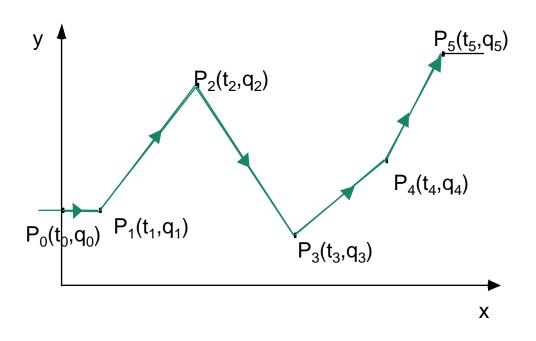
$$t_e = max(t_{ep}, t_{e\omega})$$

Analog zur Anpassung der Geschwindigkeiten bei synchronen PTP

• Falls
$$t_e = t_{ep}$$
:
$$v_{\omega} = \frac{b_{\omega} \cdot t_e}{2} - \sqrt{\frac{b_{\omega}^2 \cdot t_e^2}{4} - s_{e\omega} \cdot b_{\omega}}$$

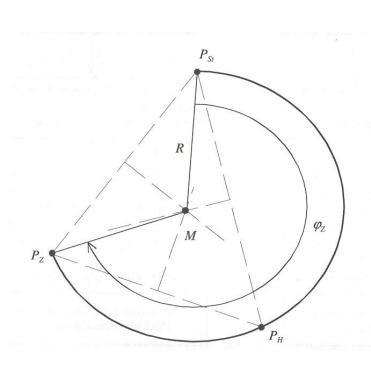
• Falls
$$t_e = t_{ew}$$
:
$$v_p = \frac{b_p \cdot t_e}{2} - \sqrt{\frac{b_p^2 \cdot t_e^2}{4} - s_{ep} \cdot b_p}$$

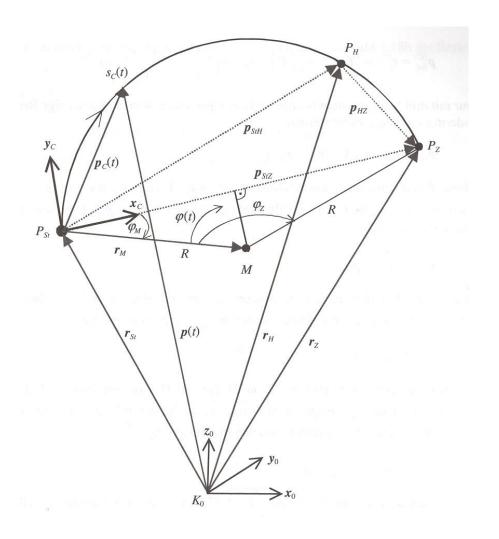
CP linear



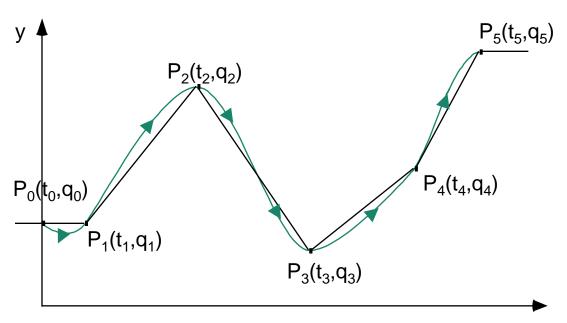
Die Robotersteuerung interpoliert die Bahn zwischen je 2 Teiltrajektorien.

Zirkularinterpolation





Segmentweise Bahninterpolation



- Die Endbedingungen der Teiltrajektorie j-1 (Richtung, X)
 Geschwindigkeit, Beschleunigung) und die Anfangsbedingungen der
 Teiltrajektorie j werden aneinander angeglichen
- Teiltrajektorien werden separat beschrieben (Bsp: Splines)

Beispiel: Kubische Splines (1)

Geg.: * Polynom:
$$f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$
 $(a_0, a_1, a_2, a_3 \in R)$ (1)

* Start und Ziel:
$$S_{Start}, S_{Ziel}$$
 (2)

Ansatz:
$$\dot{f}(t) = a_1 + 2a_2t + 3a_3t^2$$
 (3)

$$\ddot{f}(t) = 2a_2 + 6a_3 t \tag{4}$$

Aus (1) und (2) folgt

$$f(t_{Start}) = f(0) = a_0 = S_{Start}$$
 (5)

$$f(t_{Ziel}) = a_0 + a_1 t_{Ziel} + a_2 t_{Ziel}^2 + a_3 t_{Ziel}^3 = S_{Ziel}$$
 (6)

Interpolationsarten

Beispiel: Kubische Splines (2)

Aus Randbedingungen $(\dot{f}(t_{Start}) = \dot{f}(t_{Ziel}) = 0)$

und (3) folgt:

$$\dot{f}(t_{Start}) = \dot{f}(0) = a_1 = v_{Start}$$
 (7)

$$\dot{f}(t_{Ziel}) = a_1 + 2a_2t_{Ziel} + 3a_3t_{Ziel}^2 = v_{Ziel}$$
 (8)

$$a_2 = \frac{V_{Ziel} - V_{Start}}{2t_{Ziel}} - \frac{3}{2} a_3 t_{Ziel}$$
 (9)

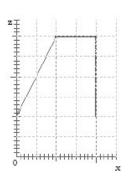
$$a_3 = \frac{2(S_{Start} - S_{Ziel})}{t_{Ziel}^3} + \frac{(V_{Start} - V_{Ziel})}{t_{Ziel}^2}$$
 (10)

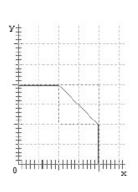
$$a_2 = \frac{3(S_{Ziel} - S_{Start})}{t_{Ziel}^2} - \frac{(V_{Ziel} + 2V_{Start})}{t_{Ziel}}$$

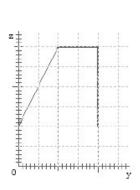
Interpolationsarten

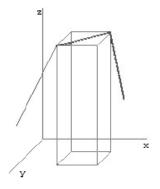
Beispiel: Splines

Bahn (4 Stützpunkte)

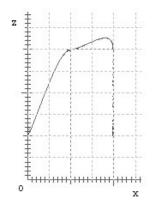


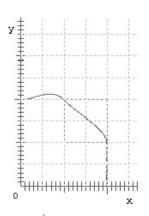


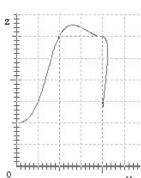


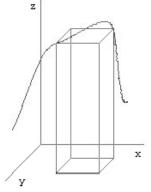


Splineinterpolation









Inhalt

- Grundlagen der Bahnsteuerung
- Interpolationsarten
- Approximierte Bahnsteuerung
 - Bernsteinpolynome

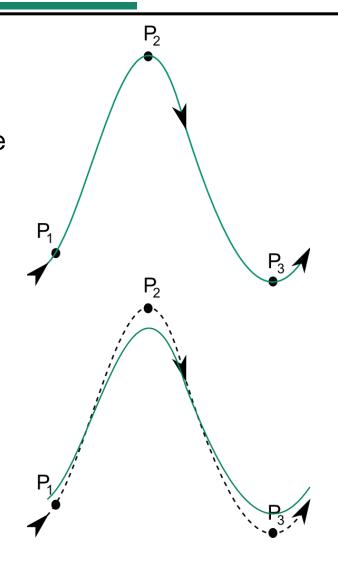
Definition

Bahninterpolation

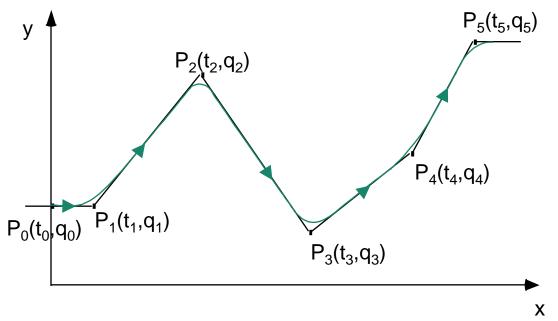
 Die ausgeführte Bahn verläuft durch alle Stützpunkte der Trajektorie

Bahnapproximation

 Die Kontrollpunkte beeinflussen den Bahnverlauf und werden approximiert

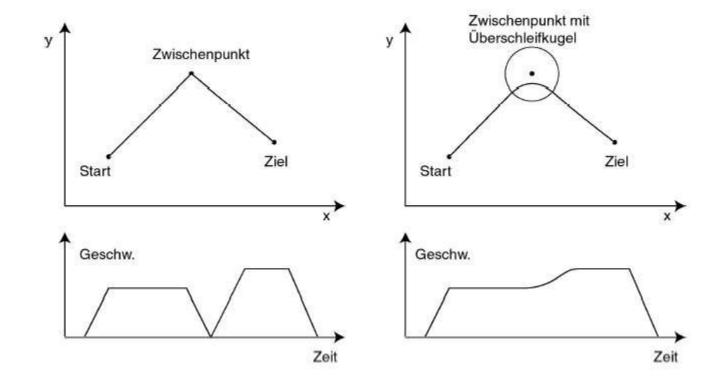


PTP und CP mit Überschleifen



Zum Zeitpunkt t_j -ɛ wird begonnen die Parameter (Richtung und Geschwindigkeit) der Teiltrajektorie j-1 auf die Parameter der Teiltrajektorie j zu überführen. I.d.R. wird der Stützpunkt i nicht erreicht.

PTP und CP mit Überschleifen (2)

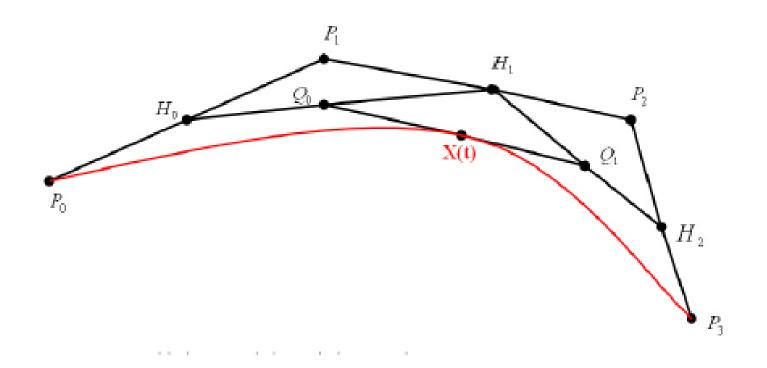


PTP und CP mit Überschleifen (3)

- Geschwindigkeitsüberschleifen
 - Beginn, wenn die Geschwindigkeit einen festgelegten Minimalwert unterschreitet.
 - Nachteil: Abhängig vom Geschwindigkeitsprofil.
- Positionsüberschleifen
 - Beginn, wenn der TCP in die Überschleifkugel eintritt
 - Außerhalb der Überschleifkugel wird die Bahn exakt eingehalten.
 - Vorteil: Gut kontrollierbar

Approximation mit Polynomen

Beispiel: Bernsteinpolynome



Bernsteinpolynom

- Im Unterschied zu kubischen Splines verlaufen
 Bézierkurven nicht durch alle Stützpunkte, sondern werden nur von ihnen beeinflusst.
- Basisfunktion:

$$P(t) = \sum_{i=0}^{n} B_{i,n}(t) P_i \qquad 0 \le t \le 1$$

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

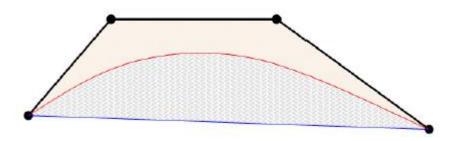
Berechnung beliebiger Zwischenstellungen

Bernsteinpolynom f
ür kubischen Fall

$$B_{i,3}(t) = \binom{3}{i} t^i (1-t)^{3-i}$$

$$p(t) = p_0(1-t)^3 + 3p_1(1-t)^2t + 3p_2(1-t)t^2 + p_3t^3$$

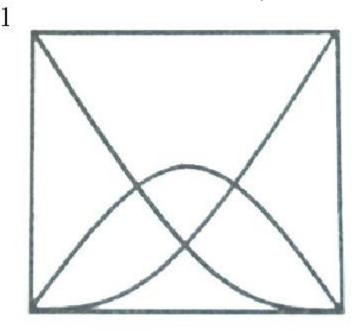
- Annähern von unten an Stützstellen
- keine beliebige Form

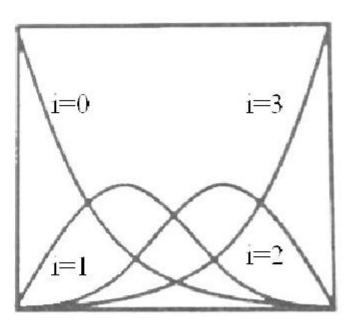


Beispiele für Bernsteinpolynome

Quadratische Polynome B_{i,2}

Kubische Polynome B_{i,3}





0

0

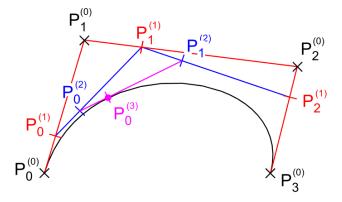
Fakultät für Informatik

Der De-Casteljau-Algorithmus (1)

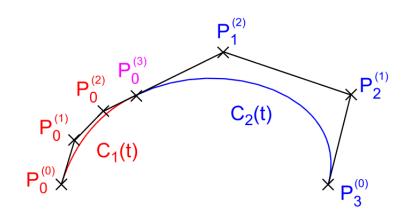
- Annäherung an die Bézierkurve
- Iterative Berechnung:
 Kann auch für große n effizient berechnet werden
- Gegeben: n Kontrollpunkte P₀, ..., P_{n-1}
- Start: $P_i^{(0)} = P_i$
- Iteration k: $P_i^{(k+1)} = (1 t_0) \cdot P_i^{(k)} + t_0 \cdot P_{i+1}^{(k)}$

Der De-Casteljau-Algorithmus (2)

Beispiel für P₀ mit k=3 und t₀=0.25:



- Zwei Bézierkurven C₁(t) und C₂(t)
- Approximation der Bézierkurve durch Polygonzug



Advanced Example

